Squat exercise biomechanics during short-radius centrifugation.

نویسندگان

  • Kevin R Duda
  • Thomas Jarchow
  • Laurence R Young
چکیده

INTRODUCTION Centrifuge-induced artificial gravity (AG) with exercise is a promising comprehensive countermeasure against the physiological de-conditioning that results from exposure to weightlessness. However, body movements onboard a rotating centrifuge are affected by both the gravity gradient and Coriolis accelerations. The effect of centrifugation on squat exercise biomechanics was investigated, and differences between AG and upright squat biomechanics were quantified. METHODS There were 28 subjects (16 male) who participated in two separate experiments. Knee position, foot reaction forces, and motion sickness were recorded during the squats in a 1-G field while standing upright and while supine on a horizontally rotating 2 m radius centrifuge at 0, 23, or 30 rpm. RESULTS No participants terminated the experiment due to motion sickness symptoms. Total mediolateral knee deflection increased by 1.0 to 2.0 cm during centrifugation, and did not result in any injuries. There was no evidence of an increased mediolateral knee travel "after-effect" during postrotation supine squats. Peak foot reaction forces increased with rotation rate up to approximately 200% bodyweight (iRED on ISS provides approximately 210% bodyweight resistance). The ratio of left-to-right foot force throughout the squat cycle on the centrifuge was nonconstant and approximately sinusoidal. Total foot reaction force versus knee flexion-extension angles differed between upright and AG squats due to centripetal acceleration on the centrifuge. DISCUSSION A brief exercise protocol during centrifugation can be safely completed without significant after-effects in mediolateral knee position or motion sickness. Several recommendations are made for the design of future centrifuge-based exercise protocols for in-space applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Knee biomechanics of the dynamic squat exercise.

PURPOSE Because a strong and stable knee is paramount to an athlete's or patient's success, an understanding of knee biomechanics while performing the squat is helpful to therapists, trainers, sports medicine physicians, researchers, coaches, and athletes who are interested in closed kinetic chain exercises, knee rehabilitation, and training for sport. The purpose of this review was to examine ...

متن کامل

A biomechanical comparison of the traditional squat, powerlifting squat, and box squat.

The purpose of this study was to compare the biomechanics of the traditional squat with 2 popular exercise variations commonly referred to as the powerlifting squat and box squat. Twelve male powerlifters performed the exercises with 30, 50, and 70% of their measured 1 repetition maximum (1RM), with instruction to lift the loads as fast as possible. Inverse dynamics and spatial tracking of the ...

متن کامل

Electromyographic Activity of Selected Muscles During Squat Exercise With and Without Upper Limb Assistance

Purpose: A variation in squatting technique is using arms to actively push the bar up with the upper limbs which is common in bodybuilding. This study aimed to compare the Electromyography (EMG) activity of selected muscles during squat with and without upper limb assistance. Methods: This was a quasi-experimental study. Fifteen healthy male power lifters (using the convenience sampling method...

متن کامل

Squatting kinematics and kinetics and their application to exercise performance.

The squat is one of the most frequently used exercises in the field of strength and conditioning. Considering the complexity of the exercise and the many variables related to performance, understanding squat biomechanics is of great importance for both achieving optimal muscular development as well as reducing the prospect of a training-related injury. Therefore, the purpose of this article is ...

متن کامل

A biomechanical comparison of back and front squats in healthy trained individuals.

The strength and stability of the knee plays an integral role in athletics and activities of daily living. A better understanding of knee joint biomechanics while performing variations of the squat would be useful in rehabilitation and exercise prescription. We quantified and compared tibiofemoral joint kinetics as well as muscle activity while executing front and back squats. Because of the in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Aviation, space, and environmental medicine

دوره 83 2  شماره 

صفحات  -

تاریخ انتشار 2012